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Abstract— CORDIC is generally faster than other approaches when a hardware multiplier (e.g., a microcontroller) is not available, or when 

the number of gates required to implement the functions it supports should be minimized (e.g., in an FPGA). On the other hand, 

when a hardware multiplier is available (e.g., in a DSP microprocessor), table-lookup methods and power series are generally faster than 

CORDIC. In recent years, the CORDIC algorithm has been used extensively for various biomedical applications, especially in FPGA 

implementations. Here we use Unfolded architecture for CORDIC in order to achieve low latency for rotation and various functions such as 

multiplication, division logarithmic exponential and trigonometric functions. The approach of this architecture provides high performance 

and low latency field programmable gate array implementation of rotational CORDIC algorithm. CORDIC device is highly suitable for 

computing many functions with precisely the same hardware, so they are ideal for applications with an emphasis on reduction of cost (e.g. 

by reducing gate counts in FPGAs) over speed and low clock rate can be utilized to meet low power consumption requirement. 

Index Terms— CORDIC, FPGA, Pre-computation, Radix-4, Unfolded architecture, vectors.   

——————————      —————————— 

1 INTRODUCTION                                                                     

he COordinate Rotation DIgital Computer (CORDIC) al-
gorithm was described by J. E. Volder in 1959 [1] for the 
computation of trigonometric functions. The CORDIC is 

known as an efficient method for the computation of these 
elementary functions such as multiplication, division, loga-
rithmic and exponential functions in addition to the computa-
tion of two dimensional vector rotations. It‘s one among the 
best compromise between the look up table approach which 
require more memory, and polynomial approximation meth-
od, they are slow in obtaining the desired accuracy or preci-
sion. These transcendental functions are the core for many 
applications such as digital signal processing, graphics, image 
processing, and kinematic processing [3]-[6]. The application 
of CORDIC algorithm is extended to Neural Networks, satel-
lite communication systems, wireless devices to mention a 
few. Research in the area of expanding the allowed ranges of 
the input variables for which accurate output values can be 
obtained is presented. It is observed that the latency and 
hardware of radix-2 CORDIC can be reduced by employing 
redundant radix-4 arithmetic and pre-computing the direction 
of rotations. 
Thus the architecture proposed to reduce the latency which 
helps in implementing VLSI designs.  

2 CORDIC ARCHITECTURES 

The architecture for implementation of CORDIC Algorithm 
with iterative nature depends on some of the important factors 
such as speed, area of silicon, power consumption. In general, 
the architectures can be broadly classified as folded and 
unfolded. The conventional radix-2 CORDIC algorithm was 
implemented using word serial and pipelined architectures for 
non-redundant radix-2 arithmetic, additionally it is 

advantageous if relatively long stream of data have to be 
processed in the same manner. The computation time and the 
achievable throughput of these CORDIC architectures 
depends on the delay of carry propagate 
additions/subtractions.  The two common redundant number 
systems employed in CORDIC arithmetic are the signed-digit 
(SD) [7] and the carry-save (CS) [8] number systems. In both 
SD and CS number systems, each number can be represented 
in multiple ways, and this redundancy restricts the carry 
propagation from each stage to its immediate more significant 
bit position. This architecture helps us to develop constant 
scale factor methods using signed digit arithmetic [9] [10] and 
carry save arithmetic [11]. The delay of every iteration is 
differentiated into two delays, the delay to predict the new 
directional rotation and the delay in the application of 
computed rotation. The total computation delay is reduced by 
eliminating iterative nature in the x/y-data path completely 
[13] and partially [14]. The latency of this CORDIC 
architecture is improved by radix-4 arithmetic. Hence we go 
with an unfolded architecture using radix-4 arithmetic. 

3 CORDIC ALGORITHM  

   The CORDIC algorithm [1] is a well-known method to com-
pute of two dimensional rotation of vector in linear, circular 
and hyperbolic coordinate system. The CORDIC iteration is 
completely free from multipliers and requires only shift and 
add operations. The CORDIC method can be implemented in 
two different modes, namely, rotation or forward rotation 
mode and vectoring or backward rotation mode. For a given 
initial coordinates of a vector and target angle, the rotation 
mode is used for general rotation of vector by the given angle 
and to compute elementary operations such as trigonometric 
functions, multiplication, exponential, and hyperbolic func-
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tions depending on the coordinate system. The vectoring 
mode is used to determine the angular argument of the origi-
nal vector, and to compute division and logarithmic functions, 
for the given initial and final coordinates of vector.  
                      The iteration equations of the CORDIC algorithm 
at the (i+1)th step are, 

 
xi+1 = xi – mσi ρ-Sm,i yi               (1a) 

 
yi+1 = σi ρ-Sm,i xi + yi                   (1b) 

 
zi+1 = zi - σi αm,i                            (1c) 

 
where, σi ∈  {−1, +1} represents the direction of rotation in 

each iteration, ρ represents the radix of the number system, m 
steers the choice of linear (m = 0), circular (m = 1), or hyper-
bolic (m = −1) coordinate systems, Sm,i is the nondecreasing 
integer shift sequence, and αm,i is the elementary rotation 
angle. The relation between αm,i and Sm,i is 

 
αm,i=  1/  tan-1 ( ρ

-Sm,i
)            (2) 

 

The value of σi is determined by the following equation assuming 

that vector is in the first or fourth quadrant: 

 

 

σi =     sign(zi)  for rotation                (3) 

                                -sign(yi),  for vectoring 

 

Where, zi and yi are the steering variables in rotation and vec-
toring mode respectively. For every CORDIC rotation the 
length of the vector alters. Hence, the resultant vector after n 
iteration has to be scaled by the scale factor, K 
 

K = i                             (4a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Organization of the proposed CORDIC for 16-bit preci-

sion. 

ki = 1+mσ
2

iρ
-2Sm,i      

                    (4b) 

3.1 RADIX-4 CORDIC ALGORITHM 

The iteration equations of the radix-4 CORDIC algorithm in 
rotation mode at the (i + 1)th step are as follows: 

 
xi+1 = xi - σi  yi 4-i                         (5a) 

 
yi+1 = σi   xi 4-i + yi                       (5b) 

 
zi+1 = zi – tan-1 (σi 4-i)                   (5c) 

 
Where σi ∈  {−2, −1, 0, 1, 2} and tan−1 (σi4−i) is an elementary 
angle. This algorithm results in a variable scale factor and has 
to be computed in every iteration. To implement perfect rota-
tion, final coordinates must be multiplied by the reciprocal of 
scalefactor, K−1 
 

K-1 =  i
-1  =  +σi

2 4-2i)-1/2             (6) 

4 PROPOSED ARCHITECTURE 

 
Here we make use of unfolded architecture to implement the 
rotational CORDIC algorithm. In order to achieve the latency 
improvement over unfolded architecture we make use of ra-
dix-4 arithmetic and precomputation of direction of rotation in 
this architecture [9] [12]. Fig. 1 shows the architecture of the 
proposed CORDIC rotator. The direction of rotations σi for the 
given target angle θ are determined before the actual CORDIC 
rotation starts iteratively in the x/y-datapath. These precom-
puted σi values are used in the x/y-datapath to implement 
rotation as described in the subsequent sections.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Realization of σ Computation 
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4.1 Σ-PRECOMUTATION 

 

This block computes directions in minimally redundant radix-
4 representation (mRRadix4) using the linear relation between 
the rotation angle θ and constructed binary representation of 
directions of microrotations d [19] 

 
d = 0.5θ + 0.5c1 + δ                   (7) 

 
where c1 = 2 −∑∞

i=0 (2−i − arctan(2−i)), δ =∑n/3 i=0 (diεi) and εi = 
2−i − arctan(2−i). Fig. 2 shows the realization of Eq. 7 using a 
ROM, comparator, minimally redundant hybrid radix-4 adder 
(mRHRadix4 Adder). 

ROM: A 32×48 ROM is selected to store the 28 approximate 
offset values for any input angle in the range (−π/2, π/2) for 
16-bit precision [12]. Each location of ROM contains a refer-
ence angle θref , and two offset values (δk ,δk−1) correspond-
ing to that reference angle and the previous reference angle 
respectively. A 2-to-1 multiplexer is used to select one of the 
two offset values accessed from the ROM for the given input 
angle based on the select signal. This select signal is generated 
by a comparator. Since the size of ROM increases exponential-
ly with precision, offset value δ is partitioned into δROM and 
δr for precision greater than 16-bit. For any input angle within 
the acceptable range, δROM is stored in ROM and δr can be 
computed employing a binary tree adder circuit. 
Comparator: The comparator generates sign signal ‗0‘ (θ > θref 
for selecting δk) or ‗1‘ (θ < θref for selecting δk−1) with a delay 
of (log2 n)tmux.  

mRHRadix4 Adder: The 16-bit redundant radix-4 represen-
tation of 0.5c1 is added to nonredundant radix-4 representa-
tion of 0.5θ and δROM using two maximally redundant hy-
brid radix-4 adders to obtain σ ∈  {−2,−1, 0, 1, 2} each with a 
delay of 2tFA, where tFA is one full adder delay. 

 

4.2  X/Y-DATAPATH 
 

The x/y-datapath (see Fig. 1) requires eight microrotation 
stages for 16-bit precision to compute x/y coordinates. The 
maximally redundant radix-4 (MRRadix4) adder/subtractor is 
designed to realize Eq. 5a and Eq. 5b. Each microrotation stage 
of the x/y-datapath requires MRRadix4 adder/subtractor, 2- 
to-1 multiplexer and an AND gate. The SD adder/subtractor is 
controlled by the sign of σi value. The accuracy of the compu-
tation of x/y-coordinates is affected by two primary sources of 
error, angle approximation and rounding error. The first type 
of error depends on how closely z variable is driven to zero 
using finite number of elementary angles. This introduces an-
gle approximation error due to the quantized representation 
of rotation angle. The data path accuracy can be increased by 
performing a large number of iterations to reduce the angle 
approximation error ψ given by 

 
Ψ = θ -                 (8)  

 

such that | ψ | < αn−1 and is negligible in practical computa-
tion [2]. The second type of error is due to the limitation of the 
finite length of storage elements available for the implementa-
tion of the CORDIC rotator. These finite length storage ele-
ments introduce rounding error due to the truncation of vari-
ables during the computation. The numerical analysis of these 
errors is provided in [18]. Since the truncation of intermediate 
results after every n iterations introduces maximum rounding 
error of log2 n bits in binary arithmetic, an additional log2 n 
guard bits must be considered in the implementation of this 
algorithm [2]. Hence, we have considered 20-bit wide data bus 
for 16-bit precision to design x/y-datapath in the proposed 
architecture. 
 
4.3. SCALE FACTOR COMPUTATION 
 
Redundant radix-4 CORDIC algorithm results in a variable 
scale factor,  
 

K-1 =  + σi24-2i)-1/2               (9) 
 
Where σi ∈  {−2,−1, 0, 1, 2}. We consider only the first (n/4 + 1) 
iterations in the computation of K−1, since ki-1 = (1 + 
4−2i)−1/2 becomes unity thereafter. Thus, for this 16- bit im-
plementation, we compute scale factor for the first five itera-
tions. The hardware overhead for this scale factor computation 
in every iteration can be reduced by storing all possible scale 
factors in memory. Since σi 2can take any one of the three val-
ues {0, 1, 4} in each iteration i, it is required to store 35 possible 
scale factors in ROM for 16-bit precision. The size of ROM can 
be reduced by using Taylor series expansion of the scale factor 
[15]. The scale factor can be approximated by the first two 
terms of its Taylor series expansion for i  ≥  [n/8 + 1] for n-bit 
precision. Hence for 16-bit precision, the scale factor corre-
sponding to the first three iterations is obtained from 27 × 16 
ROM and this value is used to compute the scale factor for the 
remaining two iterations using a combinational circuit as 
shown in Fig.3.The 27 possible values for the scale factor K(2)-
1 corresponding to the first three iterations are computed as 
 

ki
−1 = (1+σi

2 4−2i)−1/2                  (10a) 
 
The scale factors for the remaining two iterations k3−1and k4-
1 are obtained by performing the shift and subtraction opera-
tions over the scale factor obtained from ROM. This is imple-
mented by realizing the first two terms of their Taylor series 
expansions. 
 
4.4. SCALE FACTOR COMPENSATION 
 
The final x/y-coordinates are scaled by performing two paral-
lel multiplications corresponding to K−1.x and K−1.y. This is 
implemented using redundant tree adder circuit after the last 
iteration. The number of partial products can be decreased by 
reducing the number of nonzero digits in the multiplier. The 
canonical signed digit (CSD) representation is preferred for 
representing scale factor as it can reduce the average number 
of nonzero digits to n/3 [17]. 
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4.5. REDUNDANT TO BINARY CONVERTER (RBC) 
 
RBC converts scaled x/y-coordinates from radix-4 signed bi-
nary digit representation into radix-2 binary. Fast converters 
can be designed using tree based or carry select approaches 
wherein both employ multiplexer cells. We have designed 
RBC using tree based approach, which generates all carries  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.  Scheme for scale factor computation. 
 
after (log2 n)tmux delay. These multiplexer based converters 
are faster than binary ripple carry adder with a delay of ntFA 
or fast carry propagate adder with a delay of (log2 n)tFA [19]. 

5 EVALUATION 

The estimated latency of the proposed unfolded rotational 
CORDIC architecture is compared with the various unfolded 
architectures available in the literature. The latency compari-
son and basis for deriving these metrics is summarized below. 
The word length of datapath is considered as n to simplify 
comparison. 
The proposed architecture requires n/2 microrotation stages 
with stage delay as the sum of the delays of MRRadix4 ad-
der/subtractor (t4−2SD add/sub), 2-to-1 multiplexer 
(t2−1mux) and an AND gate (tand). The delay to compute the 
direction of rotations is the sum of the delays of ROM, com-
parator, multiplexer, minimally redundant hybrid radix-4 
signed digit adder (mRHRadix4 adder). 

In [9], double rotation and correcting rotation archi-
tectures compute the directions iteratively using the estimated 
value of zi. Both these architectures require 1.5n iterations 
with stage delay determined by the z-path. The stage delay of 
z path is sum of the delays of 3-2 SD adder/subtractor, 2-to-1 
multiplexer and the delay to compute the directions of rota-
tions (tσi). The delay for the computation of the estimated val-
ue of zi and evaluation of the selection function determine tσi . 

In [11], an unfolded architecture is presented to re-
duce latency by predicting σi‘s in parallel for a certain group 
of iterations at a time avoiding iterative nature in the z path 
with n stages. The x/y-path decides the stage delay and hence 
the overall iteration delay corresponds to the sum of the de-
lays of 4-2 CSA adder/subtractor and 2-1 multiplexer. 

In [12], the number of stages are 3n/4 with the stage 
delay as the sum of the delays of 4-2 CSA adder/subtractor 
and 2-to- 1 multiplexer for the first n/2 iterations and with an 
additional 2-1 multiplexer delay for the next n/4 iterations. 

In [13], flat CORDIC algorithm was proposed to elim-
inate iterative nature completely in the x/y-datapath for re-
ducing the total computation time. While the directions for the 
first n/3 iterations are precomputed using Split Decomposi-
tion Algorithm (SDA), directions for the last 2n/3 iterations 
are predicted from the remaining angle after (n/3) iterations. 
The implementation of flat CORDIC achieves low computa-
tion time and low implementation area. However, this re-
quires complex combinational hardware blocks with poor 
scalability limiting the range of input angle. 

In [14], architecture is proposed for 16-bit precision to 
reduce latency by eliminating iterative nature partially in the 
x/y/z-path at the cost of scalability. For the first λ iterations of 
n, x/y recurrences are computed iteratively using the double 
rotation method [9]. It is observed from the simulation results 
that the best trade-off is obtained with λ = 6 and λ = 8 for a 16- 
and 32-bit CORDIC respectively. After λ iterations, z-path is 
eliminated and parallelized x/y-datapath is implemented us-
ing Wallace tree. However, this architecture has poor scalabil-
ity. 
The latency comparison in terms of number of stages for the 
proposed architecture and other architectures is presented in 
Table I. 
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TABLE I 
LATENCY COMPARSION 

 
TABLE II 
FPGA IMPLEMENTATION RESULTS 

 

 

 
 
 
 
 
 
 

 
Implementation results: The proposed architecture is im-

plemented with the word length of 20 bits for 16-bit precision 
using signed digit arithmetic on a Xilinx Sparten-3E device 
(XC3S250E).In this implementation, we have considered four 
guard bits in order to reduce the quantization errors. We ob-
tained hardware complexity for prototype as 4,508 lookup 
tables occupying 1,389 slices out of available 2,448 resulting in 
the latency of 80 ns. The latency is further reduced to 68 ns, 
using Xilinx Sparten-6 (XC6SLX4) with better routing re-
sources. Table II summarizes the resource usage for both the 
devices. The proposed architecture is coded using the Verilog 
language and synthesized to the using XILINX ISE13.1i. 

 

6. CONCLUSIONS 
 

In this work, the architecture is to reduce the area and compu-
tation delay of rotational CORDIC by halving the number of 
iterations and pre-computation of directions for all rotations. 
The proposed architecture is fully scalable and can be extend-
ed to higher accuracy as well. It is evident from the compari-
son of the proposed CORDIC with other unfolded architec-
tures available in the literature that it achieves reduction in the 
number of stages while eliminating the z-path completely. 
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